Author Profiling Using Support Vector Machines
نویسندگان
چکیده
The objective of this work is to identify the gender and age of the author of a set of tweets using Support Vector Machines. This work is done as a task for the PAN 2016 which is a part of the CLEF conference. Techniques like tagging, removing stopwords, stemming, Bag-of-Words representation were used in order to create a 10 classes model. The tuning of the model was based on grid-search using k-fold cross-validation. The model was tested for precision and recall with the corpus from PAN 2015 and PAN 2016 and the results are presented. We have experienced the Peaking Phenomenon with the increment of the number of features. In the future we plan to try the term frequency-inverse document frequency in order to improve our results.
منابع مشابه
Application of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data
This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values. Seismic surveying was performed next on these models. F...
متن کاملA Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels
The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...
متن کاملAuthor Profiling using Complementary Second Order Attributes and Stylometric Features
In this paper we present an approach for the task of author profiling. We propose a modular framework, extracting two main group of features, combined with appropriate preprocessing, implementing Support Vector Machines for classification. The two main groups we used were stylometric and discriminative, featuring trigrams on one hand and complementary-weighted Second Order Attributes on the oth...
متن کاملAuthor Profiling using Stylometric and Structural Feature Groupings
In this paper we present an approach for the task of author profiling. We propose a coherent grouping of features combined with appropriate preprocessing steps for each group. The groups we used were stylometric and structural, featuring among others, trigrams and counts of twitter specific characteristics. We address gender and age prediction as a classification task and personality prediction...
متن کاملSTAGE-DISCHARGE MODELING USING SUPPORT VECTOR MACHINES
Establishment of rating curves are often required by the hydrologists for flow estimates in the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and difficult process and the conventional approach of regression analysis of stage-discharge relation does not provide encouraging results especially during the floods. P
متن کاملMining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM
Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...
متن کامل